БАЛЛИСТИКА: БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ - meaning and definition. What is БАЛЛИСТИКА: БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is БАЛЛИСТИКА: БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ - definition

НЕМЕЦКО-АМЕРИКАНСКИЙ ФИЛЬМ 2002 ГОДА
Баллистика (фильм); Баллистика: Экс против Сивер (фильм)

БАЛЛИСТИКА: БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ      
К статье БАЛЛИСТИКА
Баллистика в конечной точке рассматривает физику разрушающего действия оружия на поражаемые цели. Ее данные используются для усовершенствования большинства систем оружия - от винтовок и ручных гранат до ядерных боеголовок, доставляемых к цели межконтинентальными баллистическими ракетами, а также средств защиты - солдатских бронежилетов, танковой брони, подземных укрытий и т.д. Ведутся как экспериментальные, так и теоретические исследования явлений взрыва (химических взрывчатых веществ либо ядерных зарядов), детонации, проникновения пуль и осколков в различные среды, ударных волн в воде и грунте, горения и ядерных излучений.
Взрыв. Эксперименты в области взрыва проводятся как с химическими взрывчатыми веществами в количествах, измеряемых граммами, так и с ядерными зарядами мощностью до нескольких мегатонн. Взрывы могут производиться в разных средах, таких, как земля и скальные породы, под водой, у поверхности земли в нормальных атмосферных условиях или в разреженном воздухе на больших высотах. Главный результат взрыва - образование ударной волны в окружающей среде. Ударная волна распространяется от места взрыва сначала со скоростью, превышающей скорость звука в среде; затем с уменьшением интенсивности ударной волны ее скорость приближается к скорости звука. Ударные волны (в воздухе, воде, грунте) могут поражать живую силу противника, разрушать подземные укрепления, морские суда, здания, наземные транспортные средства, самолеты, ракеты и спутники.
Для моделирования интенсивных ударных волн, возникающих в атмосфере и у поверхности земли при ядерных взрывах, применяются особые устройства, называемые ударными трубами. Ударная труба, как правило, представляет собой длинную трубу, состоящую из двух секций. На одном ее конце расположена камера сжатия, которая заполняется воздухом или другим газом, сжатым до сравнительно высокого давления. Другой ее конец представляет собой камеру расширения, открытую на атмосферу. При мгновенном разрыве тонкой диафрагмы, разделяющей две секции трубы, в камере расширения возникает ударная волна, бегущая вдоль ее оси. На рис. 4 показаны кривые давления ударной волны в трех поперечных сечениях трубы. В сечении 3 она принимает классическую форму ударной волны, возникающей при детонации. Внутри ударных труб можно размещать миниатюрные модели, которые будут претерпевать ударные нагрузки, аналогичные действию ядерного взрыва. Нередко проводятся испытания, в которых действию взрыва подвергаются более крупные модели, а иногда и полномасштабные объекты.
Экспериментальные исследования дополняются теоретическими, и вырабатываются полуэмпирические правила, позволяющие предсказывать разрушающее действие взрыва. Результаты таких исследований используются при проектировании боезарядов межконтинентальных баллистических ракет и противоракетных систем. Данные такого рода необходимы также при проектировании ракетных шахт и подземных убежищ для защиты населения от взрывного действия ядерного оружия.
Для решения специфических задач, характерных для верхних слоев атмосферы, имеются специальные камеры, в которых имитируются высотные условия. Одна из таких задач - оценка уменьшения силы взрыва на больших высотах.
Проводятся также исследования, в которых измеряются интенсивность и длительность прохождения ударной волны в грунте, возникающей при подземных взрывах. На распространение таких ударных волн влияют тип грунта и степень его слоистости. Лабораторные опыты проводятся с химическими ВВ в количествах менее 0,5 кг, тогда как в полномасштабных экспериментах заряды могут измеряться сотнями тонн. Такие эксперименты дополняются теоретическими исследованиями. Результаты исследований используются не только для усовершенствования конструкции оружия и убежищ, но и для обнаружения несанкционированных подземных ядерных взрывов. Исследования детонации требуют проведения фундаментальных исследований в области физики твердого тела, химической физики, газодинамики и физики металлов.
Осколки и пробивная способность. Осколочные боевые части и снаряды имеют металлическую наружную оболочку, которая при детонации заключенного в нее заряда химического бризантного ВВ разрывается на многочисленные кусочки (осколки), разлетающиеся с большой скоростью. Во время Второй мировой войны были разработаны снаряды и боеголовки с зарядами кумулятивного действия. Такой заряд обычно представляет собой цилиндр из взрывчатого вещества, на переднем конце которого имеется коническая выемка с размещенным в ней коническим металлическим вкладышем, как правило медным. Когда с другого конца заряда ВВ начинается взрыв и вкладыш сжимается под действием очень высоких давлений детонации, образуется тонкая кумулятивная струя материала вкладыша, вылетающая в направлении цели со скоростью более 7 км/с. Такая струя способна пробивать стальную броню толщиной в десятки сантиметров. Процесс формирования струи в боеприпасе с зарядом кумулятивного действия показан на рис. 5.
Если металл находится в прямом контакте с взрывчатым веществом, ему могут передаваться давления ударной волны, измеряемые десятками тысяч МПа. При обычных размерах заряда ВВ порядка 10 см длительность импульса давления составляет доли миллисекунды. Столь огромные давления, действующие кратковременно, вызывают необычные процессы разрушения. Примером таких явлений может служить "скалывание". Детонация тонкого слоя ВВ, помещенного на броневую плиту, создает очень сильный импульс давления малой длительности (удар), пробегающий по толщине плиты. Дойдя до противоположной стороны плиты, ударная волна отражается как волна растягивающих напряжений. Если интенсивность волны напряжений превысит предел прочности на растяжение материала брони, происходит разрывное разрушение вблизи поверхности на глубине, зависящей от первоначальной толщины заряда ВВ и скорости распространения ударной волны в плите. В результате внутреннего разрыва броневой плиты образуется металлический "осколок", с большой скоростью отлетающий от поверхности. Такой летящий осколок может вызвать большие разрушения.
Чтобы выяснить механизм явлений разрушения, проводят дополнительные эксперименты в области металлофизики высокоскоростной деформации. Такие эксперименты проводятся как с поликристаллическими металлическими материалами, так и с монокристаллами различных металлов. Они позволили сделать интересный вывод относительно зарождения трещин и начала разрушения: в тех случаях, когда в металле имеются включения (примеси), трещины всегда начинаются на включениях. Проводятся экспериментальные исследования пробивной способности снарядов, осколков и пуль в разных средах. Ударные скорости лежат в пределах от нескольких сотен метров в секунду для низкоскоростных пуль до космических скоростей порядка 3-30 км/с, что соответствует осколкам и микрометеорам, встречающимся с межпланетными летательными аппаратами.
На основе таких исследований выводятся эмпирические формулы относительно пробивной способности. Так, установлено, что глубина проникновения в плотную среду прямо пропорциональна количеству движения снаряда и обратно пропорциональна площади его поперечного сечения. Явления, наблюдающиеся при ударе с гиперзвуковой скоростью, показаны на рис. 6. Здесь стальная дробинка со скоростью 3000 м/с ударяется о свинцовую пластину. В разное время, измеряемое микросекундами от начала соударения, сделана последовательность снимков в рентгеновских лучах. На поверхности пластины образуется кратер, и, как показывают снимки, из него выбрасывается материал пластины. Результаты исследования соударения при гиперзвуковой скорости делают более понятным образование кратеров на небесных телах, например на Луне, в местах падения метеоритов.
Раневая баллистика. Для имитации действия осколков и пуль, поражающих человека, производят выстрелы в массивные мишени из желатина. Подобные эксперименты относятся к т.н. раневой баллистике. Их результаты позволяют судить о характере ран, которые может получить человек. Информация, которую дают исследования по раневой баллистике, дает возможность оптимизировать эффективность разных видов оружия, предназначающегося для уничтожения живой силы противника.
Броня. С использованием ускорителей Ван-де-Граафа и других источников проникающего излучения исследуется степень радиационной защиты людей в танках и бронеавтомобилях, обеспечиваемая специальными материалами для брони. В экспериментах определяется коэффициент прохождения нейтронов сквозь плиты из разных слоев материалов, имеющие типичные танковые конфигурации. Энергия нейтронов может лежать в пределах от долей до десятков МэВ.
Горение. Исследования в области воспламенения и горения проводятся с двоякой целью. Первая - получить данные, необходимые для увеличения способности пуль, осколков и зажигательных снарядов вызывать загорание топливных систем самолетов, ракет, танков и т.д. Вторая - повысить защищенность транспортных средств и стационарных объектов от зажигательного действия вражеских боеприпасов. Проводятся исследования по определению воспламеняемости разных топлив под действием различных средств воспламенения - искр электрического разряда, пирофорных (самовоспламеняющихся) материалов, высокоскоростных осколков и химических воспламенителей.
баллистик         
  • Исследование стрелкового оружия на стенде в ходе баллистической экспертизы
НАУКА О ДВИЖЕНИИ ТЕЛ
Баллистическая траектория; Баллистическая экспертиза; Баллистик
м.
Специалист в области баллистики.
БАЛЛИСТИКА         
  • Исследование стрелкового оружия на стенде в ходе баллистической экспертизы
НАУКА О ДВИЖЕНИИ ТЕЛ
Баллистическая траектория; Баллистическая экспертиза; Баллистик
и, мн. нет, ж.
Наука о законах полета артиллерийских снарядов, пуль, ракет и т.п. Баллистик - ученый, специалист по баллистике. Баллистический - относящийся к баллистике.

Wikipedia

Баллистика: Экс против Сивер

«Баллистика: Экс против Сивер» (англ. Ballistic: Ecks vs. Sever) — фильм 2002 года производства США при участии Германии.

Мировые кассовые сборы составили 28 миллионов долларов при бюджете в 70. Фильм получил крайне отрицательные отзывы и был признан Rotten Tomatoes худшей кинокартиной десятилетия.

What is БАЛЛИСТИКА: БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ - meaning and definition